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Chapter 1

Introduction

Image processing with the aid of computers has been a prominent research sub-
ject for the last decades. It started with basic statistic methods early in the
seventies with applications for medical imaging, satellite imagery and photo
enhancement. Real-time processing and more advanced methods based on par-
tial differential equations (PDEs) started to evolve in the eighties, along with
a better data performance and computational efficiency. With todays modern
computers and dedicated hardware for image processing, the applications for
image processing are still growing and creating more complicated problems that
are yet to be solved.

Among the various image processing applications there is a strong need
for mathematics. The image processing field covers a lot of different areas in
mathematics, and solving image processing applications, using e.g nonlinear
PDEs, requires the study of function spaces in order to get meaningful phys-
ical solutions. To be able to arrive at the nonlinear PDE equations, different
mathematical frameworks may be needed: optimization techniques, functional
analysis, convex analysis, variational methods, statistical analysis, parameter
estimation, etc. As one can see, image processing based on PDE can be very
sophisticated, and when a nonlinear PDE is established, there is a crucial need
for fast computational algorithms. This includes important fields such as: nu-
merical linear algebra, numerical analysis, finite difference/elements, multilevel
methods, fourier analysis, approximation theory, etc.

The different image processing applications of interest, that are based on
PDEs, include image segmentation [32, 30, 18], image registration [7, 22], image
in-painting[3, 28, 38] and image denoising [33, 36, 40, 10, 9, 11]. The latter will
be studied in this thesis. For further introduction to the different applications
for image processing based on PDEs, see the books on the topic [2, 17] and
references therein. Other methods are of cource also possible, and statistic
methods and wavelet theory have shown to produce promising results, see the
book [17] for furher introduction to other ways of solving applications from
image processing.

The image denoising problems that are solved in this thesis uses techniques
that aim to minimize a given energy functional, that describes the solutions
to the problem. These problems are typically ill-posed inverse problems, i.e we
observe the input image, and the main challange is to smooth out the noise while
preserving the main features of the true image. The observed image is normally
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given by an input image, which is composed by the right-handed terms:

The above illustration shows that finding the true image requires knowing
the blurring kernel and the noise data. This is not easily solved, as we only
have one equation and three unknown variables. The kernel operator is often
known, e.g the blurring kernel, and this can be approximated. But the noise is
often only given by some statistical estimates, such that the noise is zero-mean
white Gaussian noise of an estimated variance. By the nature of this problem
we can only find an approximated solution.

To find any meaningful solutions to the problem, there is a need for addi-
tional assumptions. The variational approach is to regularize the solution, and
in the early nineties, the total variational was proposed by the authors Rudin,
Osher and Fatemi (ROF model). This was a huge breakthrough, since total
variation preserves interesting features in the solution, such as sharp edges that
are important to recover.

The thesis is arranged in the following way. First we introduce a brief
overview of the mathematical framework, this includes the function spaces, dif-
ferential operators and how to discretize the nonlinear equations that arise from
the functional minimization.

The next chapter will give a brief introduction on how to restore a noisy
image based on partial differential equations. These PDE methods evolve in
time and depend on the the derivatives of different orders. A famous example
is the heat equation, that smoothes the image by diffusion. It will be necessary
to introduce nonlinearity, in order to keep the edges in the image. Based on
the difficulties from the PDEs, the minimization of an edge preserving energy
functional is given. The classical ROF model that uses the total variation reg-
ularization, with a L2 fidelity term, is given with theoretical results such as
existence and uniqueness. The corresponding Euler equation, that minimizes
the energy functional, is then derived into a set of nonlinear partial differential
equations. An overview of the drawbacks that total variation based restoration
introduces into the solution, is also precented. Motivated by the numerical dif-
ficluties for the nonlinear term, a dual formulation is solved by the Chambolle
iteration proposed in [9], that will improve the speed of convergence.

The second-to-last chapter is the main contribution in this thesis. This chap-
ter is devoted to two models that reduce the staircase effect: the Fourth-Order
model [10, 12, 26] and the TV-Stokes model [38, 34, 25, 21]. The latter is a two-
step approach that decouples the Fourth-Order model into two second-order
problems, since higher-order methods tend to have computational difficulties
due to very large conditioning. The first step of the TV-Stokes model smoothes
the tangential vector field with the condition that the vector field is divergence
free. Once the smoothed tangential vector field is obtained, the second step
reconstructs the image by fitting it to the normal vector field. Both the models

4



are derived in the dual formulation to improve the convergence speed, and solv-
ing the dual formulation is the main novelty in this thesis, see [21]. The discrete
algorithm for the dual TV-Stokes exploits the fast Fourier transformation to
solve the divergence free condition.

Finally, the last chapter is devoted to numerical experiments. This chapter
discusses the numerical behaviour of the proposed dual TV-Stokes model and
the choice for the smoothening parameter. Restored images are shown for the
different denoising algorithms, aswell as difference images and contour plots to
illustrate the denoising quality. The fast convergence for the dual TV-Stokes is
compared to the very slow primal TV-Stokes [34, 25], that is solved by explicit
schemes.

1.1 Mathematical preliminaries

This section will briefly cover some of the necessarily tools that are needed for
modern image processing, based on partial differential equations. The following
text is a standard topic in functional analysis, and if terms like function spaces
are unknown to the reader, (s)he should refer to books on the topic, see for
instance [37, 19]. Function spaces are very useful in image processing since they
possess different features that represent an image. Lets start by recalling the
Euclidean space followed by the inner product and some properties.

Definition 1 (Vector space). Euclidean n−space Rn is the set of all the n−tuples
of real numbers. If x denotes a vector in Rn then it is written as

x = [x1, . . . , xn]T (1.1)

with the length, called the Euclidean norm, defined as√
(x, x) = ‖x‖ =

√
x2

1 + . . .+ x2
n (1.2)

Definition 2 (Inner product space). The quantity (x, y) =
∑n
i=1 x

iyi is called
the inner product. Let x, x1, x2 and y, y1, y2 be vectors in Rn then the following
properties must hold

1. (x, y) = (y, x) (symmetry)

2. (ax, y) = (x, ay) = a(x, y) (bilinearity)
(x1 + x2, y) = (x1, y) + (x2, y)
(x, y1 + y2) = (x, y1) + (x, y2)

3. (x, x) ≥ 0, and (x, x) = 0 iff x = 0 (positive definiteness)

Proposition 1 (Properties of the norm). If x, y ∈ Rn and a ∈ R

1. ‖x‖ > 0 if x 6= 0

2. |(x, y)| ≤ ‖x‖‖y‖

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖

4. ‖ax‖ = |a|‖x‖
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Definition 3 (Hilbert space). A Hilbert space is a complete inner-product space.

The Lp space is a Hilbert space with the following norm

‖f‖p =
(∫

Ω

|f |p dx
)1/p

. (1.3)

Example 1 (L2-space). L2 is a Hilbert space with the following inner-product

(f, g) =
∫

Ω

fg dx. (1.4)

1.1.1 Linear mappings

Linear mappings are the tools for manipulating images. They may be described
as transformations, e.g to rotate an image by 90 degrees. A more useful trans-
formation in this thesis is the differentiation map, which will be the key for
minimization later on.

Consider two vector spaces X and Y and a mapping f : X → Y , then this
mapping is linear if

f(αx+ βy) = αf(x) + βf(y), ∀x, y ∈ X and α, β ∈ R (1.5)

If A ⊂ X and B ⊂ Y then the image and inverse image is defined by

f(A) = {f(x) : u ∈ A}, f−1(B) = {x : f(x) ∈ B} (1.6)

The mapping is called a functional if Y is the scalar field and an operator if Y
is a vector space.

Definition 4 (Differentiation operator). A operator f : Rn → Rm is differ-
entiable at a ∈ Rn if there is a linear transformation λ : Rn → Rm such that

lim
h→0

‖f(x+ h)− f(x)− λ(h)‖
‖h‖

= 0 (1.7)

The linear transformation λ = (∇f(x), h) is denoted by Df(x) and is called the
derivative of f at x.

By the above definition for f : R→ Rn and for any h 6= 0,

f ′(x;h) = (∇f(x), h), ∀h (1.8)

In particular, for j = 1, . . . , n

(∇f(x), ej) = lim
h→0

f(x+ hej)− f(x)
h

=
∂f

∂ξj
(x) (1.9)

ej is the vector of the jth row in a n × n-identity matrix, and ξj is the jth
component of f(x) so that

∇f(x) =
(
∂f

∂ξ1
(x), . . . ,

∂f

∂ξn
(x)
)

(1.10)
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which is called the gradient of f . The second-order derivative of f is called
the Hessian matrix and is denoted by D2. The trace of this matrix gives the
Laplacian

∆f(x) = tr(D2f(x)) =
n∑
i=1

∂2f

∂ξ2
i

(1.11)

If f : Rn → Rn then the n×n matrix of Df(x) is called the Jacobian matrix.
The trace of the Jacobian matrix is called the divergence

div f(x) = tr(Df(x)) =
n∑
i=1

∂fi
∂ξi

. (1.12)

Note that the Laplacian is also given by div∇f(x) = ∆f(x).
It is important to introduce a space that possesses derivatives of certain

order in order to search for meaningful solutions when solving problems based
on differential equations.

Definition 5 (The function space H1(Ω) is called a Sobolev space).

H1(Ω) =
{
f ∈ L2 : Df ∈ L2(Ω)

}
(1.13)

In the above definition the Df is a distributional derivative such that∫
Ω

Dfφ dx = −
∫

Ω

fDφ dx, φ ∈ C1
0 (Ω) (1.14)

Theorem 1 (The Sobolev space H1(Ω) is complete).

If f ∈ L1(Ω) and Df ∈ L1(Ω) in a distributional sense, then the finite total
variation is given by

Definition 6 (Total variation of f). If f ∈ L1(Ω) and Df ∈ L1(Ω)∫
Ω

|Df |dx = sup
{∫

Ω

fdiv g dx : g = (g1, . . . , gn) ∈ C1
0 (Ω)n, |g| ≤ 1

}
(1.15)

C1
0 (Ω) is the set of continuously differentiable function with compact support(functions

that vanish on the boundary) in Ω.

Thus, total variation can be seen as a measure of the amount of oscillation
in the function f .

Functions that have a finite value for the
∫

Ω
|Df |dx norm are said to have

bounded variation. The space of all these functions is called the space of
bounded variation and has the following definition

Definition 7 (BV (Ω) the space of function of bounded variation).

BV (Ω) =
{
f ∈ L1(Ω) :

∫
Ω

|Df |dx < +∞
}

(1.16)

If f ∈ C1(Ω), then with integration by parts in equation (1.15) yields∫
Ω

fdiv g dx = −
∫

Ω

n∑
i=1

∂f

∂xi
g dx. (1.17)

Thus the adjoint of the gradient is the negative divergence

(∇f, g) = (f,−div g). (1.18)
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1.1.2 Optimization and Convexity

Convexity plays an important role in optimization. It gives the problem a suffi-
cient condition for uniqueness. The references [20, 35] give a good introduction
on optimization and convex problems.

In an Euclidean space, a set is convex if every point on a straight line lies
within the set. This gives the mathematical definition of a convex set

Definition 8 (Convex set). A subset V of a vector space is convex iff for every
pair of elements u, v ∈ V their closed segment [u, v] is also in V .

A strict convex space is e.g the ‖ · ‖2 unit ball, while the unit balls of ‖ · ‖∞
and ‖ · ‖1 are not strictly convex, since they contain a line segment on the
boundary, thus the name borderline convex.

Definition 9 (Convex functional). Let f be a functional from Rn to [−∞,∞],
then f is convex if and only if

f(λu+ (1− λ)v) ≤ λf(u) + (1− λ)f(v) ∀λ ∈ [0, 1] (1.19)

if the inequality is strict, then f is strictly convex.

Note that a sum of convex functions is still convex, and a sum of a strictly
convex function and a convex function is strictly convex.

Definition 10 (Epigraph of a function). It is the set of points of V which lies
above the graph of f .

{(x, λ : x ∈ V, λ ∈ R, λ ≥ f(x)} (1.20)

It can further be shown that f is convex iff its epigraph is convex.

1.1.3 Discretization

Discretization of our problems is really the practical part of the functional anal-
ysis, the following books give a good introduction on numerical linear algebra
and analysis, [39, 24, 20]. Numerical algorithms and methods are used to find
solutions to the mathematical problems that are typically described in the con-
tinuous setting. It is therefore natural to introduce a discrete framework to
place images. The image is described in a two dimensional space X with a fixed
size N × N . We denote X by using the Euclidean space RN×N and Y will
express the vector X × X. The space X will be equipped with the Euclidean
norm from (1.2)

‖x‖X =

 ∑
1≤i,j≤N

|xi,j |2
1/2

(1.21)

and Y has the following Euclidean norm

‖y‖Y =

 ∑
1≤i,j≤N

∣∣y1
i,j + y2

i,j

∣∣21/2

(1.22)

where y = [y1, y2]T .
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An easy way to implement differential operators, as discussed in the previous
section, is to replace the operators with finite difference, i.e replace h+ → 0 to
a fixed parameter h > 0, giving the forward difference in the one-dimentional
case where f ∈ RN

Dh
+f(x) =

(f + h)− f(x)
h

(1.23)

approaching the differential from h− → 0 gives the backward difference

Dh
−f(x) =

f(x)− f(x− h)
h

. (1.24)

Another way to approximate the derivative would be to evaluate both sides,
giving the central difference

Dh
0 f(x) =

Dh
+f(x) +Dh

−f(x)
2

=
f(x+ h)− f(x− h)

2h
(1.25)

To introduce a discrete version of the gradient defined in (1.10), a natural
choice is to use the forward difference in both directions, if d ∈ X then the
gradient ∇d is a vector in Y = X ×X and is given by

(∇d)i,j =
[

(∇d)1
i,j

(∇d)2
i,j

]
(1.26)

where
(∇d)1

i,j = Dhx
+ d(x, y), if i < N (1.27)

(∇d)2
i,j = D

hy

+ d(x, y), if j < N (1.28)

It is useful to introduce a differential matrix B that approximates the differ-
ential operator. This useful since the notation will not be so cluttered as with
finite differences.

(∇d)1
i,j = dBTx (1.29)

and
(∇d)2

i,j = Byd (1.30)

where Bx(By) stands for differentiation in the x (resp. y) direction. The forward
differential (N)× (N − 1) matrix takes the following form

B =
1
h


−1 1

−1 1
. . . . . .

−1 1

 (1.31)

and the adjoint of B is defined as the backward difference (N −1)× (N) matrix

B∗ = −BT =
1
h


1
−1 1

. . . . . .
−1 1

 (1.32)
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The discrete version of the total variation given in equation (1.15) is then easily
followed by

J(d) =
∑

1≤i,j≤N

|(∇d)i,j |. (1.33)

The discrete version of the divergence operator can be defined as an analog
in the continuous setting in equation (1.18), and thus for every p ∈ Y and d ∈ X,
(−div p, d)X = (p,∇d)Y . We will use the backward difference to get symmetry
for the discrete divergence operator, hence

(div p)i,j = −p1Bx −BTy p2. (1.34)

Staggered grid

As one notices from the Taylor expansion of the centred approximation given
in (1.25), this yields second order accuracy

Dh
0 f(x) =

f(x+ h)− f(x− h)
2h

= Df(x) +O(h2). (1.35)

However, this centred approximation evaluates the difference across two cells
which can lead to undesirable approximations for short wavelengths (high fre-
quency). A better way to approximate first-order derivatives is to consider
staggered grid, or half-length approximation xi+ 1

2
= xi + h

2

f(x+ h)− f(x)
h

= Df

(
x+

h

2

)
+O(h2). (1.36)

This is just a matter of re-defining the grid as shown in figure 1.1.

Figure 1.1: Staggered grid in one dimension

1.1.4 Definition of an image

A digital image can be defined as a function, d, that is bounded and piecewise
smooth on an open subset Ω ⊂ R2 where Ω usually is square. d(x, y) represents
a pixel at the space coordinates (x, y). Is also useful to see the function d ∈ X as
a matrix dij where each component in the matrix is the finite gray-scale value,
dij = d(x = i, y = j), varying in the range from 0 (black) to 255 (white). In
practice, the gray-values are usually normalized into [0, 1].

To obtain a digital image from the continuous world, there is a need for
discretization, also known as sampling and quantization. This is done by su-
perimposing a regular grid on a continuous image, and each pixel will have
the value of the average value from the continuous image. The regular grid
will have a size (resolution) that is important for the quality of the obtained
digital image. Low resolution will give blocky images, while the computation
with these images will be fast, since the dimension of the matrix will be lower.
Higher resolution of the discretized image will give a better approximation of
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the continuous image. The problem with discretization of a continuous image
is the natural superimposed noise due to defects in the sensors, transmission
problems, interference, etc. This can be mathematically described as the ob-
served image d0 that consists of the original image d perturbed by an additive
unknown random noise variable η,

d0 = d+ η. (1.37)

The problem is given by the observed image d0 and the assumption that η is
Gaussian white noise. The values ηi,j are independent random values, each with
Gaussian distribution with zero-mean and an estimated variance ‖η‖22 ≈ σ2.
The problem is to reconstruct d from (1.37) which is an inverse problem, and
one can easily see that the problem is ill-posed, meaning that one could only get
an approximated solution for the given problem.

Another problem that can occur is e.g a blur in the observed image created
by e.g incorrect lens adjustment, this can be mathematically described as

d0 = Rd+ η (1.38)

where R is a convolution. In the rest of this thesis, we will consider the convo-
lution as an identical map R = I, i.e pure noise as described in (1.37).

There are many features in an image such as edges (discontinuities), flat
areas (zero gradient), smooth areas and textures (highly oscillating patterns).
A good denoising algorithm should try to keep these features in the image, while
effectively removing the noise.
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Chapter 2

The ROF model

This chapter will cover some of the pioneering methods that are based on vari-
ational approaches. The first section will give the primal formulation of the
ROF model [36, 40, 10] and the last section will present the dual formulation
[16, 8, 9, 13] which increases the computational efficiency.

We start by motivating for finding a solution to (1.37), a good start is to
assume a smoothness of the solution. This is a well known processes called
Tikhonov regularization of the inverse problem. The idea is to build a functional
with a smoothening term and a data fitting-term and then try to minimize this
functional

inf
d
f(d) = inf

d

∫
Ω

|∇d|2 dx+ λ

∫
Ω

|d− d0|2 dx. (2.1)

The minimizer infd f(d) will have a solution in the Sobolev space H1(Ω), and
it is unique since f(d) is strictly convex.

The Euler equation, see for instance [20, Theorem 7.2-4], for this minimiza-
tion is the following {

−∆d+ λ(d− d0) = 0 in Ω
∂d
∂n = 0 in ∂Ω.

(2.2)

An easy way to solve the above equation is to march forward in time

∂d

∂t
= ∆d− λ(d− d0) in Ω, (2.3)

this corresponds to the standard heat equation with a force term. The solution
is obtained when the iteration is stationary ∂d

∂t → 0. However, the resulting
image does not preserve interesting features in the image, since the method
smoothes out the edges and overblurrs the image, as illustrated in figure 2.1.
This is a huge drawback, as the solution d is C∞(Ω) for λ = 0, meaning that
the heat equation has infinite speed of propagation.

Over the two last decades there has been a lot of research in image processing
to restore the image d in (1.37), and one quite effective way is to introduce a
nonlinear diffusion to preserve the edges. Perona and Malik introduced the
diffusion coefficient g(|∇d|) in their classical paper [33]

∂d

∂t
= div (g(|∇d|)∇d) in Ω, (2.4)
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(a) Noisy image (b) λ = 0 (c) λ = 0.1

Figure 2.1: Heat equation with and without a force term

where g will be small when the gradient is large (detecting an edge) and large
when g detects smooth areas.

2.1 Primal Formulation

Another and more popular approach is to use variational formulation, which
has been successful and is still one of the most active areas in image processing.
Variational formulation normally means minimizing an object functional subject
to a fidelity term, and with image denoising this can be formulated as

min
d
J(d) subject to ‖d− d0‖22 = σ2, (2.5)

where J will be the regularity term and is bounded below (lower semi-continuity).
The last term ensures that the given image d0 is close to d and this term should
be proportional to the noise-level σ2

‖d∗ − d0‖22 ≈ σ2, (2.6)

where d∗ denotes an approximate solution to (2.5). σ is supposed to be a known
estimate of the variance to the error data, i.e ‖η‖2 = σ.

Choosing J(d) equal to
∫

Ω
|∇d|2 dx (H1

2 semi-norm) will smooth the image
very effectively including the discontinuous lines in the image which results in
a blurry restored image. To preserve the edges, Rudin et al. suggested in [36]
to lower the H1

2 to the H1
1 (weak derivatives in L1), which defines the functions

of bounded variation BV (Ω), recall the definition in (1.16). Thus a function
in BV (Ω) is a function defined in L1(Ω), whose distributional derivatives are a
finite total variation over Ω. The total variation (1.15) will be restated here

‖∇d‖1 = sup
{∫

Ω

ddiv ξ(x) dx : ξ ∈ C1
0 (Ω,R2), |ξ(x)| ≤ 1∀x ∈ Ω

}
. (2.7)

The above functional does not penalize the discontinuities in d, and therefore
recovers the edges from the original image. Integration by parts yields

min
d

∫
Ω

|∇d|dx subject to ‖d− d0‖22 = σ2, (2.8)

which is the famous formulation that Rudin, Osher and Fatemi published in
1992. This model is of great value to image processing, since images tend to have
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discontinuities. Another important task in image processing, which is based on
the similar model, is when an image is damaged by missing information. The
process is then to fill the missing parts in the image with information from
surrounding areas. This is called image in-painting, and pioneering works can
be found in [3, 28].

Chambolle and Lions showed in [10] that (2.8) is naturally linked with the
following unconstrained problem

min
d
f(u) = min

d

∫
Ω

|∇d|dx+
λ

2
‖d− d0‖22, (2.9)

where f(d) is the objective function and λ is a non-negative Lagrange multiplier.
This formulation is known as the TV-L2 model, and is the convexification of
(2.8) when the constraint is equal to ‖d− d0‖22 ≤ σ2.

The λ parameter balances between two terms λ→∞ and λ→ 0. If λ→∞,
the solution is given by d = d0, which is obviously not a good result. If λ→ 0,
then the solution is zero, or any constant, since ∇d = 0 and does not fit the
image with respect to d0. The optimal λ should take advantage of σ such that
the constraint ‖d− d0‖ = σ is fulfilled.

The following results show that the ROF model has a unique solution, which
is important when searching for solutions. Uniqueness and existence among
other theoretical results concerning bounded variation, can be found in [10, 1].

Proposition 2 (f(d) has a unique solution.). Suppose that f is coercive and
that f is lower semi-continuous, then the problem has a solution. The solution
is unique if f is strictly convex.

Proof. Let dn be a minimizing sequence of (2.9) such that

f(dn)→ inf
d∈L2(Ω)

f(d) = α, n ≥ 1. (2.10)

Suppose ‖d0‖L2 = 0 and that all the constrains are satisfied by dn. f(d) is
coercive: lim f(d) → +∞ for ‖d‖ → ∞. Due to Poincaré inequalities, dn is
bounded in BV (Ω), see e.g [1, Theorem 2.5]. Thus, an extracted sequence from
dn converges weakly to some d̄ ∈ L2(Ω). f is lower semi-continuous on L2,
hence

f(d̄) ≤ lim
ni→∞

f(dni
) = α, (2.11)

where d̄ is a solution of (2.8) and α 6= −∞.
If f is strictly convex, two solutions is impossible due to

f

(
d1 + d2

2

)
<

1
2

(f(d1) + f(d2)) = α. (2.12)

To derive a minimization of f(d) one introduces an admissible variation ψ
of d, i.e ψ ∈ H1(Ω), which has no constraints

φ : t ∈ I → φ(t) = f(d+ tψ). (2.13)

φ will be minimal at t = 0 and φ′(0) = f ′(d)ψ

0 ≥ lim
t→0−

φ(t)− φ(0)
t

= φ′(0) = lim
t→0+

φ(t)− φ(0)
t

≥ 0, (2.14)
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which shows that f ′(d)ψ = 0, and the ψ is arbitrary, therefore f ′(d) = 0. This
is known as the Euler equation, see [20] for further introduction on the topic.

The Euler equation of (2.9) is the following

φ(t) = f(d+ tψ) =
∫

Ω

|∇d+ t∇ψ|+ λ

2
|d− d0 + tψ|2 dx

=
∫

Ω

|∇d+ t∇ψ|+ λ

2
|d− d0|2 + λtψ(d− d0) +

λ

2
t2ψ2 dx. (2.15)

Using the fact that φ′(t) will give minimum at φ′(0) = 0

φ′(t) =
∫

Ω

(
∇d+ t∇ψ
|∇d+ t∇ψ|

,∇ψ
)

+ λψ(d− d0) + λtψ2 dx (2.16)

ψ′(0) =
∫

Ω

(
∇d
|∇d|

,∇ψ
)

+ ψλ(d− d0) dx = 0, (2.17)

integrating by parts (strong formulation) yields∫
∂Ω

ψ
∂d

∂n
dx+

∫
Ω

ψ

(
−div

∇d
|∇d|

+ λ(d− d0)
)

dx = 0. (2.18)

Then for any ψ, we reach the nonlinear partial differential equation with homo-
geneous Neumann boundary condition{

div ∇d|∇d| − λ(d− d0) = 0 in Ω
∂d
∂n = 0 in ∂Ω.

(2.19)

Note that for |∇d| = 0, (2.19) is not well-defined, this is a problem since the
solutions of the ROF model have large flat areas, i.e where ∇d = 0 in the image.
One way to solve this is to regularize f(d)

inf
d
f(d)β =

∫
Ω

√
|∇d|2 + β +

λ

2
|d− d0|2 dx, (2.20)

where β > 0 implies that f(d)β is differentiable and this yields the regularized
Euler equation{

g(d) = div ∇d√
|∇d|2+β

− λ(d− d0) = 0 in Ω
∂d
∂n = 0 in ∂Ω,

(2.21)

with homogeneous Neumann boundary condition and initial solution, given by
d = d0. g(d) = 0 is a necessary and sufficient condition for d to be a solution of
the convex minimization problem (2.20).

2.1.1 Drawbacks

Total variation restoration is very good for recovering images from noise. Unfor-
tunately it may fail in some areas to give a satisfactorily result, due to artificial
effects that are introduced while performing pure total variation with a L2 fi-
delity term. These drawbacks can be found in the survey paper [11], and they
will be restated here.
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Regularization The first disadvantage one notices about the ROF model is
the β-regularization. The drawback is that the smaller β responds to more
iterations before convergence, and this makes the ROF model rather slow when
solving for time marching schemes. Choosing higher β gives faster convergence,
but smooths the image needlessly.

Staircase It is well known that the ROF model produces staircase effect for
piecewise smooth areas. In figure 2.2 it is easy to see why this happens. The
figure consists of a decreasing function from [5, 25], and when noise is added, the
function becomes piecewise constant for the decreasing parts. When running
the ROF scheme, the nondecreasing parts will be smoothed out as illustrated
in the figure below.

(a) Original function (red-line) and
noisy function (blue-line).

(b) Denoised function (blue-line)
with the staircase effect.

Figure 2.2: Illustration of staircase effect

Loss of texture Another disadvantage when using total variation based meth-
ods, is that texture is easily smoothed out during the denoising. In a recently
proposed model by Osher et al. in [31], they prevent this by iterative regular-
ization, which means running the ROF model multiple times, and each time
adding the difference between the observed noisy image and the previous one,
i.e di+1 = di + (d0 − di). Thus, the noise (and the details!) are added back to
the image.

Loss of constrast Loss of contrast is also a limitation for the ROF model. If
the input image d0(x, y) is a disk, then the solution is given by αd(x, y), where
α ∈ [0, 1), i.e the solution is never α = 1. This disadvantage can also be seen in
the one-dimensional example illustrated in figure 2.2, where the solution f(x)
is in the range (0, 2).

One approach to this problem is given in [14], where they weaken the fidelity
norm. They formulated the problem to measure the L1-norm between the ob-
served and denoised data. The TV-L1 minimization problem is then given by

inf
d

∫
Ω

|∇d|+ λ

2
|d− d0|dx. (2.22)

The above formulation is not strictly convex, which means that there is no
unique global minimizer. The reason why this formulation has been studied, is
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that it has some disirable advantages, e.g that the solution is contrast invariant.
This means that if d is a solution for the problem (2.22), then αd is also a
solution for αd0, where d0 is the initial input image and α is a scaling factor.

2.1.2 Numerical methods

There are various ways of solving (2.21), and in [36] the authors Rudin et al.
suggested to forward the equation with artificial time to get a gradient descent
scheme

dn+1 = dn − kg(dn), n = 0, 1, 2, . . . , (2.23)

as n→∞. When steady-state is achieved ∂d
∂t → 0, the solution dn+1 will satisfy

the unique solution of the minimizer given in (2.8). The timestep k must be
chosen to satisfy the Courant-Friedrichs-Lewy (CFL) condition k ≤ c|∇d|, for
some constant c > 0. Due to this condition, the method converges rather slowly,
since k must be chosen small. This is due to that |∇d| is approximately zero in
flat regions.

The main difficulty that equation (2.21) poses is the linearization of the
highly nonlinear term div (∇d/|∇d|β). Thus, one way to overcome the CFL
condition is to linearise (2.21) by using the nonlinear term 1/|∇d|β from the
previous iteration. This was proposed in [40] and is known as lagged diffusivity
fixed point iteration. The term dn+1 can then be solved by the following sparse
system of linear equations

dn+1 = d0 +
1
λ

div
(
∇dn+1

|∇dn|β

)
. (2.24)

This gives a faster iteration than (2.23), but reacts more to the β-regularization
due to the highly nonlinear term. Vogel et al. also solve the above itera-
tion with multigrid methods, but unfortunately, standard finite differences or
finite elements discretization yield disappointing results when the input image
d0 is not sufficiently smooth. Thus, by achieving O(n) complexity, higher β-
regularization is needed such that the nonlinear term is well behaved.

2.2 Dual Formulation

As seen in the previous section, a major drawback of the ROF model is that
the formulation is non-differentiable in zero, due to the total variation term.
To overcome further regularization, Chambolle in [9], Carter in [8] and Chan et
al. in [16], studied the so called dual formulation for the ROF model. We will
reduce the above presented primal formulation to the dual formulation. Lets
consider the more general definition of the total variation, given in equation
(2.7), and use the right-handed definition to obtain the inf − sup problem

inf
d

sup
|p|≤1

h(d, p) = inf
d

sup
|p|≤1

{∫
Ω

(d,div p) +
1

2λ
|d− d0|2 dx

}
. (2.25)

Hence h(d̄, p̄) is a saddle point since d̄ is the minimum of the function h(d̄, ·),
and p̄ is the maximum of the function h(·, p̄), such that

sup
|p|≤1

f(d̄, p) = f(d̄, p̄) = inf
d

(d, p̄). (2.26)
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Given any elements d̂ and p̂ gives the following inequality

inf
d
f(d, p̂) ≤ f(d̂, p̂) ≤ sup

|p|≤1

f(d̂, p), (2.27)

and as infd f(d, p̂) is a function of the single variable p̂, and d̂ is the single
variable for sup|p|≤1 f(d̂, p), this yields that the following inequality exists

sup
|p|≤1

inf
d
f(d, p) ≤ f(d, p) ≤ inf

d
sup
|p|≤1

f(d, p). (2.28)

The fact that f(d̄, p̄) is a saddle point from equation (2.26), gives that the
necessary converse inequality must also hold. This is of great value for solving
(2.25), since it does not matter which problem is solved first. Thus interchanging
the sup and inf from equation (2.25) yields the inner minimization

sup
|p|≤1

inf
d
h(d, p) = sup

|p|≤1

inf
d

∫
Ω

(d, div p) +
1

2λ
|d− d0|2 dx. (2.29)

Hence the equation is piecewise continuous and differentiation w.r.t d is easy

d = d0 − λdiv p. (2.30)

The term λdiv p = πλ is the nonlinear projection that is to be solved and
inserted into (2.30) instead of solving the primal problem. This projection can be
solved by substituting (2.30) into (2.29) and deriving the following maximization
problem

sup
|p|≤1

h(p) = sup
|p|≤1

∫
Ω

(d0,div p)−λ
2
|div p|2 dx = sup

|p|≤1

1
2λ

∫
Ω

|d0|2−|λdiv p− d0|2 dx,

(2.31)
using sup {h} = − inf {−h} yields the following minimization problem for the
dual variable

min
p

{
‖div p− λ−1d0‖22 : |p| ≤ 1

}
. (2.32)

In one dimension p is pair of two vectors, and the above minimization is
easily solved by e.g least-square methods. In our case, p is a pair of two matri-
ces. Chambolle solved the minimization problem by considering the optimality
condition, also known as the KKT conditions (due to Karush-Kuhn-Tucker, cf.
[20, Theorem 9.2-3])

−(∇(div p− λ−1d0)) + αp = 0, (2.33)

where α is the Lagrangian multiplier associated with the constraint p that must
satisfy {

α > 0
|p| = 1 or

{
α = 0
|p| < 0. (2.34)

He then did an important observation, that in either case

α = |(∇(div p− λ−1d0))|, (2.35)

such that the (2.35) can be substituted into equation (2.33) which yields the
equation

(∇(div p− λ−1d0))− |(∇(div p− λ−1d0))|p = 0. (2.36)
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2.2.1 Discrete algorithm

By considering the minimization problem in a discrete framework we have the
following analog to (2.32)

min
p

{
‖divh p− λ−1d0‖2X : |pi,j | ≤ 1, i, j = 1, . . . N

}
. (2.37)

Deriving with the same arguments as (2.33)-(2.36) and considering

pn+1 − pn

k
= ∇h

(
divh pn − λ−1d0

)
−
∣∣∣∇h (divh pn − λ−1d0

)∣∣∣ pn+1 (2.38)

yields a semi-implicit scheme known as Chambolle’s iteration that is given in
[9]

p0 = 0, pn+1 =
pn + k∇h

(
divh p− λ−1d0

)
1 + k

∣∣∣∇h (divh p− λ−1d0

)∣∣∣ . (2.39)

The iteration converges for k ≤ 1/8 which is proven in [9]. In practice,
convergence is observed by setting k equal to 1/4. This gives a rapid convergence
up to 50-100 iterations, and then the speed of convergence decays.
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Chapter 3

Staircase reducing models

Section 2.1.1 pointed out some of the areas where the ROF model may suffer
from an inefficient restoration. This chapter will first give a brief overview of
some of the proposals from the literature that may improve these problems.
Then the main focus will be on the staircasing effect. Two models that deal
with this effect will be presented: the Fourth-Order model [10, 12, 26] and the
TV-Stokes model [38, 34, 25, 21]. The latter reference is the novelty in research
literature and it is the main contribution in this thesis. Both models will be
given in dual formulation and the next section will give numerical experiments
for these models. It should also be noted that these problems are still challenging
problems in image processing and remain to be solved.

The ROF model treats flat regions and edges well, but favours piecewise
constant functions in the solution, known as staircase effect. This is an adverse
effect in images that contain regions with gradual image variations. To pre-
vent this over-sharpening there have been some proposals to minimize different
regularizations terms.

A more general version of the ROF model may be given as the following
minimization problem

inf
d

∫
Ω

φ(|∇d|) +
λ

2
(d− d0) dx, (3.1)

where φ : R+ → R+ is a smooth function. The above minimization has the
following regularized Euler equation

div
(
φ′(
√
|∇d|2 + β)

∇d
|∇d|

)
− λ(d− d0) = 0, (3.2)

where β > 0 is a small parameter to avoid |∇d| = 0. Pure total variation
corresponds to φ(g) = g and φ(g) = g2 corresponds to the H1 norm. The
question now is how to combine the two norms to benefit each of them.

In [4] they propose
φ′(|∇d|) = |∇d|p−1 (3.3)

and then choose p close to 1.

20



The smooth function φ in the minimization problem (3.1) will be more in-
teresting when endowed with the following conditions

(C1) : φ(0) = φ′(0) = 0 (3.4)

(C2) : lim
s→+∞

φ(s)
s

= 0. (3.5)

The first condition (C1) implies that the first term in (3.1) is quadratic near the
origin, thus smoothes the flat areas (|∇d| ≈ 0) with the H1 norm. The second
condition (C2) implies that the function is sublinear in growth at infinity. This
property will enhance the edges since the cost of edges are low. Using the
above conditions for the smooth function φ results in an ill-posed problem since
the function is obviously non-convex. A simple example would be choosing
φ(s) = s2/(1 + s2). However, the non-convexity is irrelevant for the finite-
dimensional case as stated in [2] on page 93, and the numerical experiments
often give visually good results. This strategy is throughly presented in [23]
where the authors also gave the dual formulation with a weighted total variation
term of the non-convex problem.

In [5, 4] they proposed φ(|∇d|) = |∇d|p(|∇d|) to adapt the behaviour of |∇d|,
such that p = 1 near the edges and p = 2 in flat regions. In between these
regions they use a fractional norm H1

p , p ∈ (1, 2). A simple example would
be p(|∇d|) = 2

1+2|∇d| . However, in [5, 4], examples are given in just the one
dimensional case.

3.1 Fourth-Order denoising in dual formulation

One of the early approaches to remove staircasing in image denoising, was to
introduce higher-order derivatives or norms into the energy. The first approach
to combine the TV norm and H1 norm (square norm of the gradient) is to
consider the inf-convolution as the authors Chambolle and Lions proposed in
[10]. The resulting minimization is equivalent to

inf
d

∫
|∇d|≥ε

|∇d|dx+
ε

2

∫
|∇|<ε

|∇d|2 dx+
λ

2

∫
Ω

|d− d0|2 dx, (3.6)

where ε is a given threshold to separate the smooth and discontinuous parts of
the image.

The same method can be used to minimize the total variation of the gradi-
ent, i.e a second-order functional. Some of the earliest variants of higher-order
methods for image denoising can be found in the same paper [10], where they
decompose the image into two parts, d = d1 +d2, where d1 consists of discontin-
uous parts and d2 consists of the smooth areas of the image, and then minimize
the following problem

inf
d1,d2

∫
Ω

|∇d1|+ α|∇(∇d2)|+ λ

2
|d1 + d2 − d0|2 dx, (3.7)

such that each component is assigned to the appropriate norm, i.e d1 ∈ BV (Ω)
and d2 ∈ H1

1 (Ω) with ∇d2 ∈ BV (Ω). The results given in [10] are very good for
the one-dimensional case, but the model suffers from over-smoothening of the
edges in two dimensions.
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This is evident, since the problem is how to combine the two different norms,
which are dependent on the gradient, and this operation is unstable.

One of the first approaches to minimize only the higher-order derivaives in
the energy was proposed by the the authors Lundervold, Lysaker and Tai (LLT)
in [26], where they gave the following minimization problem∫

Ω

(|dxx|+ |dyy|) dxdy subject to ‖d− d0‖2 ≤ σ (3.8)

and another functional that is rotational invariant∫
Ω

√
|dxx|2 + |dxy|2 + |dyy|2 + |dyx|2 dxdy subject to ‖d− d0‖2 ≤ σ. (3.9)

The Euler equations for the two above functionals will result into a set of fourth-
ordered nonlinear PDEs.

We will further focus on the Fourth-Order model, and derive a dual formu-
lation of the following minimization problem

inf
d

∫
Ω

(|∇2d|) +
1

2λ
(d− d0)2 dx, (3.10)

where the regularization term is defined by |∇2d| =
√
|dxx|2 + |dyy|2. This term

is usually replaced by |∇2d|β =
√
|∇2d|2 + β2, which is a necessary regulariza-

tion to avoid the non-differentiability. The model shares the same numerical
difficulities as the ROF model, and a dual formulation will now be given to
overcome the β-regularization and the slow iteration. Similar works can be
found in [15].

We can define the regularization term as an analog to the total variation
defined in (2.7), hence

‖∇2d‖1 = sup
{∫

Ω

d∆ξ(x) dx : ξ ∈ C2
0 (Ω,R2), |ξ(x)| ≤ 1∀x ∈ Ω

}
. (3.11)

Thus, we use the right-handed definition of the above equation and deduce

inf
d

sup
|p|≤1

∫
Ω

(d,∆p) +
1

2λ
(d− d0)2 dx, (3.12)

where p is the dual variable. By the convexity of d and the concave dual function
p, we can use the same argument as in (2.25)-(2.29) to switch the inf and sup
in (3.12)

sup
|p|≤1

inf
d

∫
Ω

(d,∆p) +
1

2λ
(d− d0)2 dx. (3.13)

Solving for the inner minimization with respect to d yields

d = d0 − λ∆p. (3.14)

Thus, by the simple equation above we find our restored image by looking for
the projection λ∆p. We deduce a minimization problem for the dual variable
by substituting equation (3.14) into (3.13) and setting sup{·} = − inf{−·}, and
end up with the following dual problem

inf
p

{
‖∆p− λ−1d0‖22 : |p| ≤ 1

}
. (3.15)
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The dual minimization problem is solved by considering the optimality con-
dition for equation (3.15)

∇2
(
∆p− λ−1d0

)
+ αp = 0, (3.16)

where either α = 0 and |p| ≤ 1 or α > 0 and |p| = 1, both cases yield

α = |∇2
(
∆p− λ−1d0

)
|. (3.17)

Thus, inserting equation (3.17) into (3.16) gives

∇2
(
∆p− λ−1d0

)
+ |∆p− λ−1d0|p = 0, (3.18)

which may be solved in the same manner as the second-order Chambolle itera-
tion

pn+1 =
pn + τ

(
∇2
(
∆pn − λ−1d0

))
1 + τ |∇2 (∆pn − λ−1d0)|

. (3.19)

3.1.1 Discrete algorithm

The continuous iteration from equation (3.19) is discretized by using the matrix
operators from section 1.1.3. Thus, the second-order operator ∇2 may have the
following discrete definition

∇2
hd =

[
−dBTxBx
−BTy Byd

]
, (3.20)

and the discrete laplacian operator in the same manner

∆hd = −dBTxBx −BTy Byd. (3.21)

The full discrete version of (3.19) is then given by using the above discrete
operators

pn+1 =
pn + τ

(
∇2
h

(
∆hpn − λ−1d0

))
1 + τ |∇2

h (∆hpn − λ−1d0)|
. (3.22)

The following result gives a condition on τ for fast convergence.

Theorem 2. Let τ ≤ 1/64. Then λ∆hpn converges to solution λ∆hp of the
minimization problem given in (3.15) as n→∞.

A proof of the theorem can be found in [15] where they propose a dual
algorithm for the minimization problem given in (3.7).

As an alternative argument for convergence and a better condition for τ , we
can consider the following

pn+1 = pn+τ
(
∇2
h

(
∆hpn − λ−1d0

))
= (1+τ∇2

h∆h)pn−τ∇2
h∆hλ−1. (3.23)

By denoting the above equation as pn+1 = φ(pn) and requiring φ′(pn) ≤ 1
(1-Lipschitz) we deduce

‖τ∇2
h∆h‖ − ‖1‖ ≤ ‖1 + τ∇2

h∆h‖ ≤ 1. (3.24)

Hence, we get the following condition for τ

τ‖∇2
h∆h‖ ≤ 2. (3.25)

23



To estimate the norm of the operator ∇2
h∆h, we note that ‖B‖∞ = 2 and the

SVD of the operator ∇2
h∆h have the following form in x (resp. y) direction

∇2
h∆h = −CT

[[
0

Σ4
x

]
+
[

0
Σ4
xy

]]
C. (3.26)

Thus, the following bound in x (resp. y) direction can be estabilished

λmax

(
∇2
h∆h

)
= λmax

(
Σ4
x

)
+λmax

(
Σ4
xy

)
≤ ‖B‖42 +‖B‖42 ≤ ‖B‖4∞+‖B‖4∞ = 32,

(3.27)
giving the optimal condition for τ to be equal to 1/16. Note that the op-
erator ∇2

h∆h needs to be calculated in each iteration, and this operation is
ill-conditioned, i.e the condition number κ(∇2

h∆h) is close to 1018.

3.2 TV-Stokes denoising in dual formulation

3.2.1 Motivation

To tackle the numerical problems in higher-order methods, one can split the
problem into two steps, and solve a second-order problem in each step. There
has been some research activity to formulate a two step method, and Lysaker,
Osher and Tai (LOT model) proposed in [27] to smooth the normal vector field
in the first step with the following minimization

inf
|n|=1

∫
Ω

|∇n|+ δ

2
|n− n0|2 dx. (3.28)

This will find the smoothed flow field, i.e directions of the gradient: n =
∇d/|∇d| and n0 = ∇d0/|∇d0|. Once the normal vector field is obtained, the
image can be reconstructed by a second step, which matches the normal vector
field by the following minimization problem

inf
d

∫
Ω

|∇d| − (n0,∇d) +
µ

2
|d− d0|2 dx, (3.29)

where n0 = [n1, n2]. The LOT method gives a better result than the ROF, since
it is more edge preserving, cf. [27]. However, it still suffers from the staircase
effect, since it can not recover images containing affine regions of noise.

Another way to smooth the normal vector fields in step one, which is the
crucial part of the two-step algorithm, is to notice that the isophote lines in
the image must be constant, see Figure 3.1. Hence, the tangential vector field
is divergence free. The first step should then minimize with respect to the
tangential vector field given by

τ = ∇⊥d = [−dy, dx]T = [v, u]T , (3.30)

subject to the divergence of the tangential vector field is equal to zero, known
as incompressibility in fluid mechanics

div τ = 0. (3.31)

This is formulated in [34] by the authors Rahman, Tai and Osher. The
model will be called the primal TV-Stokes model to indicate that the energy
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Figure 3.1: Normal and tangent vectors to the isophote lines

functionals are solved with respect to the primal variables τ and d. The first
step of the primal TV-Stokes model has the following minimization problem

inf
τ

∫
Ω

|∇τ |+ δ

2
|τ − τ0|2 dx subject to div τ = 0. (3.32)

where τ0 is given by τ0 = [v0, u0]T . Once the smoothed tangential vector field
is obtained, the corresponding normal vector field is then calculated by n =
[u,−v]. The normal vector field can be used to reconstruct the noisy image by
fitting it with the following second step minimization

inf
d

∫
Ω

|∇d| −
(
∇d, n
|n|

)
dx subject to

∫
Ω

(d− d0)2 dx = σ2. (3.33)

The authors then solve the problem by finding the Euler-Lagrange equations
for (3.32-3.33) and then iterating the nonlinear PDEs with an explicit gradient
descent method until steady-state is reached. This, however, is very slow due
to the nature of explicit forward schemes. A modified TV-Stokes model is
proposed by Litvinov, Rahman and Tai in [25], where they establish existence
and uniqueness to the minimization problems for both steps of the model.

The next sections will reformulate the primal equations given by (3.32) and
(3.33) into a dual formulation, which improves the speed drastically.

3.2.2 First step: tangent field smoothing

To derive a dual formulation of the primal problem (3.32) we introduce the
definition of the total variation of the tangential vector field∫

Ω

|∇τ |dx = sup
p∈K

{∫
Ω

(τ,div pi) dx : i = 1, 2
}

(3.34)

and K is closure of the convex set{
div ξi : ξi ∈ C1

0 (Ω,R2), |ξi(x)| ≤ 1,∀x ∈ Ω, i = 1, 2
}
. (3.35)

The dual variable p is now a vector composed by the two dual variables for
both directions in the tangential vector field. The divergence of this field then
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given by

div p = (div p1,div p2)T , div p1 =
∂p1

1

∂x
+
∂p2

1

∂y
, div p2 =

∂p1
2

∂x
+
∂p2

2

∂y
. (3.36)

This definition of the divergence is similar to the vectorial dual norm from [6]
for vectorial images, e.g. color images.

Using the dual formulation of the total variation norm, the primal problem
(3.32) can be written as minimization of the following dual problem

inf
div τ=0

sup
|p|≤1

∫
Ω

(τ,div p) +
1
2δ
|τ − τo|2 dx, (3.37)

interchange sup and inf with the same argument as given in the section 2.2

sup
|p|≤1

inf
div τ=0

∫
Ω

(τ,div p) +
1
2δ
|τ − τo|2 dx. (3.38)

Let us introduce the orthogonal projection ΠP onto the constrained subspace
P = {τ : div τ = 0}. This projection may be given as

ΠP

[
π1

π2

]
=
[
π1

π2

]
−∇∆+div

[
π1

π2

]
. (3.39)

Thus, finding the minimum for the inner problem, without constraint div τ =
0, is obtained by using the property from orthogonal projection, (τ,div p) =
(ΠP τ,div p) = (τ,ΠPdiv p), and the Euler equation. The equation (3.38) with
the orthogonal projection

sup
|p|≤1

inf
div τ=0

∫
Ω

(τ,ΠPdiv p) +
1
2δ
|τ − τo|2 dx (3.40)

is solved by obtaining the following derivation for the Euler equation

φ(t) = E(τ + tψ, λ) =
∫

Ω

(τ + tψ,ΠPdiv p) +
1
2δ
|τ − τ0 + tψ|2 dx

=
∫

Ω

(τ,ΠPdiv p)+(tψ,ΠPdiv p)+
1
2δ
|τ − τ0|2 + δ−1(tψ, τ − τ0)+

1
2δ
|tψ|2 dx.

(3.41)

φ′(t) will give minimum at φ′(0) = 0

φ′(t) =
∫

Ω

(ψ,ΠPdiv p) + δ−1(ψ, τ − τ0) + δ−1|tψ|dx, (3.42)

φ′(0) =
∫

Ω

(ψ,ΠPdiv p) + δ−1(ψ, τ − τ0) dx = 0, (3.43)

then for any ψ, minimum in (3.40) is obtained by

τ = τo − δΠPdiv p. (3.44)
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Note that by the means of a Lagrangian multiplier λ, equation (3.40) may
be written as

sup
|p|≤1

inf
τ,λ

∫
Ω

(τ,div p) +
1
2δ
|τ − τo|2 + (λ,div τ) dx, (3.45)

that gives the Euler equations

τ = τ0 − δdiv p− δ∇λ (3.46)
div τ = 0. (3.47)

Left multiplying the equation (3.46) with the div operator, lets us solve the
equation −∆λ = div div p with the help of the pseudoinverse ∆+. Inserting λ
into equation (3.46) gives the primal variable τ with the orthogonal projection
(3.39) that satisfies div τ = 0.

We arrive at the minimization of the distance ‖ΠPdiv p− δ−1τ0‖ by substi-
tuting (3.44) back into (3.40)

sup
|p|≤1

∫
Ω

(τ0,ΠPdiv p)− δ|ΠPdiv p|2 +
δ

2
|ΠPdiv p|2+ =

sup
|p|≤1

∫
Ω

(τ0,div p)− δ

2
|ΠPdiv p|2 = inf

|p|≤1

∫
Ω

δ

2
ΠP |div p|2 − (τ0,div p) dx =

= inf
|p|≤1

1
2δ

∫
Ω

δ2ΠP |div p|2 − 2δ (τ0,div p) + (τ0, τ0)− (τ0, τ0) dx. (3.48)

The problem now consists of solving the quadratic minimization problem

min
p

{∥∥ΠPdiv p− δ−1τ0
∥∥2

2
: |pi| ≤ 1, i = 1, 2

}
. (3.49)

Note that ΠP is an orthogonal projection of a convex set, hence P is another
convex set, therefore the objective function in (3.49) is still convex. This satisfies
the KKT conditions, such that the existence of the Lagrange multipliers αi ≥ 0
associated to each constraint in (3.49), are given by

−
(
∇
(
ΠPdiv p− δ−1τ0

))
i
+ αipi = 0. (3.50)

Looking at the optimal conditions for the constraint functions, Chambolle no-
ticed that αi can be eliminated since αi > 0 and |pi| = 1 or αi = 0 and |pi| < 1,
in both cases

αi =
∣∣∇ (ΠPdiv p− δ−1τ0

)
i

∣∣ . (3.51)

Thus eliminating αi by substituting (3.51) into (3.50)

−
(
∇
(
ΠPdiv p− δ−1τ0

))
i
+
∣∣∇ (ΠPdiv p− δ−1τ0

)
i

∣∣ pi = 0. (3.52)

Now we introduce an artificial time variable t and solve the time-dependent
problem until steady-state, i.e t→∞ s.t ∂pi

∂t → 0, this gives the iteration

∂pi
∂t

= (∇ (δΠPdiv p− τ0))i − |(∇ (δΠPdiv p− τ0))i| pi. (3.53)

The solution for the smoothed tangential vector field is given by equation (3.44).
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3.2.3 Second step: image reconstruction

In the second step the noisy image d0 is reconstructed with the help of the
smoothed normal vector field from step one. The minimization problem is as
follows

inf
d

∫
Ω

|∇d| −
(
∇d, n
|n|

)
dx subject to

∫
Ω

(d− d0)2 dx = σ2. (3.54)

Similar to the derivation for the dual ROF model in section 2.2, the total varia-
tion can be expressed as the dual total variation, and together with the adjoint
operator of the gradient, the primal functional (3.54) can be rewritten into the
inf − sup problem

inf
d

sup
|r|≤1

∫
Ω

(
d,div

(
r +

n
|n|

))
dx subject to

∫
Ω

(d− d0)2 dx = σ2. (3.55)

Equation (3.55) solves the same problem as the following unconstrained problem
where µ > 0 is a Lagrangian multiplier

sup
|r|≤1

inf
d

∫
Ω

(
d,div

(
r +

n
|n|

))
+

1
2µ

(d− d0)2 dx. (3.56)

The µ constant will act as a global smoothening parameter, i.e it controls the
global smoothing effect and div (n/|n|) will act as a local smoothening term.
Using the similar derivation of the Euler equation as in the first step, we obtain
the primal variable d by the simple expression

d = d0 − µdiv
(
r +

n
|n|

)
, (3.57)

where r is the dual variable. Substituting (3.57) into (3.56) gives a maximization
problem for the dual variable

sup
|r|≤1

∫
Ω

(
d0,div

(
r +

n
|n|

))
−µ
∣∣∣∣div

(
r +

n
|n|

)∣∣∣∣2+
µ

2

∣∣∣∣div
(
r +

n
|n|

)∣∣∣∣2 dx =

= sup
|r|≤1

∫
Ω

|d0|2 −
∣∣∣∣µdiv

(
r +

n
|n|

)
− d0

∣∣∣∣2 dx (3.58)

Finally, one can solve the above dual problem by using sup {·} = − inf {−·}
which yields the final minimization problem

min
r

{∥∥∥∥div
(
r +

n
|n|

)
− µ−1d0

∥∥∥∥2

2

: |r| ≤ 1

}
. (3.59)

As before, the KKT conditions give existence to the Lagrangian multipliers
α ≥ 0 associated to the constraint |r| ≤ 1 in (3.59)

−∇
(

div
(
r +

n
|n|

)
− µ−1d0

)
+ αr = 0 (3.60)
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with either α > 0 and |r| = 1 or α = 0 and |r| < 1, in any case

α =
∣∣∣∣∇(div

(
r +

n
|n|

)
− µ−1d0

)∣∣∣∣ . (3.61)

Substituting (3.61) into (3.60) and introducing the artificial time t gives the
time-dependent problem that needs to be solved until steady-state

∂r

∂t
= −∇

(
µdiv

(
r +

n
|n|

)
− d0

)
+
∣∣∣∣∇(µdiv

(
r +

n
|n|

)
− d0

)∣∣∣∣ r = 0, (3.62)

and the denoised image is then given by equation (3.57).

3.2.4 Discrete orthogonal projection

We start by giving the discrete algorithm for the dual TV-Stokes model by
solving the orthogonal projection (3.39). This projection will project elements
from the finite set Kh which is defined in similar manner as the convex set K

Kh = {divh pi : pi ∈ Y, |pi,j,k| ≤ 1, i = 1, 2, ∀ j, k = 1, . . . N}, (3.63)

onto the finite constrained subset

Ph =
{
τ ∈ Y : divh τ = 0

}
. (3.64)

The discrete orthogonal projection ΠP : Kh → Ph has the form

Πh
P = I −∇h(∆h)+divh , (3.65)

where the gradient and the divergence operators are defined by the matrix oper-
ators from equations (1.26) (1.34). The discrete definition of the pseudoinverse
operator has the following definition

Definition 11. The pseudoinverse of an operator (∆h) = UΣV T , denoted
(∆h)+, has the following form

(∆h)+ = V Σ+UT , (3.66)

where Σ+ is obtained by transposing Σ and inverting all nonzero entries.

Thus, to complete the definition of (3.65), we need a description of the Lapla-
cian. Let us consider two possibilities, the zero Dirichlet boundary condition

∆h
D = −dBxBTx −ByBTy d =


−2 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −2

 (3.67)

and the zero Neumann boundary condition

∆h
N = −dBTxBx −BTy Byd =


−1 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −1

 . (3.68)
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Note that the latter Laplacian matrix is singular.
We start solving the Poisson equation f = ∆h

Dd by considering the N ×N
Discrete Cosine Transformation matrix, C, which is defined by dct(eye(N)) in
MATLAB. The Discrete Sine Transformation matrix, S̃, is defined in the same
manner as dst(eye(N-1)), which satisfies the equation S̃T S̃ = (N/2)I, where I
is the identity matrix. Thus, an orthogonal symmetric matrix S = −S̃/

√
N/2

of order N − 1 will be used. The singular value decomposition of B has the
following form

B = S[0,Σ]C, Σ = diag (σ1, . . . , σN−1) , (3.69)

where the diagonal matrix Σ has the entries

σk =
2
h

sin
πk

2N
, k = 1, 2, . . . , N − 1. (3.70)

Applying the singular value decomposition to the Laplacian with zero Dirich-
let boundary condition (3.67) yields

∆h
Dd = −dST [0; Σx]CTC[0,Σx]S − ST [0; Σy]CTC[0,Σy]Sd, (3.71)

by the orthogonality of C, the above equation reduces to

f = ∆h
Dd = −dSTΣ2

xS − STΣ2
ySd. (3.72)

Denoting the transformations d̂ = SdST and f̂ = SfST gives the equation

f̂ = −d̂Σ2
x − Σ2

yd̂ (3.73)

which is easily solved by d̂ with the aid of (3.66), such that d̂ = G(f̂) is given
by

d̂ = −f̂/(σ2
x + σ2

y). (3.74)

Thus the pseudoinverse operator (∆h
D)+ can be efficiently computed with the

help of the Discrete Sine Transform

(∆h
D)+f = STG(SfST )S, (3.75)

where G is defined in (3.74).
The pseudoinverse for equation (3.68) is found in the similar manner, the

equation can be rewritten as

f = ∆h
Nd = −dCT

[
0

Σ2
x

]
C − CT

[
0

Σ2
y

]
Cd. (3.76)

Denoting f̃ = CfCT and d̃ = CdCT we arrive at the equation

f̃ = −d̃
[

0
Σ2
x

]
−
[

0
Σ2
y

]
d̃. (3.77)

This equation is easily solved with respect to d̃. Suppose that the matrices f̃
and d̃ have the entries f̃ij and d̃ij for i, j = 0, 1, . . . . Note that in our case
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f̃00 = 0. Then the solution d̃ = H(f̃) is as follows:

d̃00 = 0,

d̃i,0 = −f̃i,0/σ2
i,y, i = 1, 2, . . . ,

d̃0,j = −f̃0,j/σ
2
j,x, j = 1, 2, . . . ,

d̃ij = −f̃ij/(σ2
i,y + σ2

j,x), i, j = 1, 2, . . . .

(3.78)

Thus the pseudoinverse operator (∆h
N )+ can be efficiently computed with the

help of the Discrete Cosine Transform:

(∆h
N )+f = CTH(CfCT )C, (3.79)

where the function H is defined in (3.78).

3.2.5 Discrete algorithm

The images will be two dimensional matrices with rectangular size N ×N . We
will approximate the derivatives by finite difference introduced in section 1.1.3,
and take advantage of the staggered grid, or cell centred approximation, given
in section 1.1.3.

First step The full discrete version of equation (3.53) is then the following
iteration

pn+1
i = pni +k

(
∇h
(
δΠh

Pdivh pni − τ0
)
−
∣∣∣∇h (δΠh

Pdivh pn − τ0
)∣∣∣ pn+1

i

)
(3.80)

or

p0
i = 0, pn+1

i =
pni + k∇h

(
δΠh

Pdivh pni − τ0
)

1 + k
∣∣∣∇h (δΠh

Pdivh pni − τ0
)∣∣∣ ; i = 1, 2. (3.81)

Section 3.2.5 discusses stopping critera for the semi-implicit iteration (3.81),
and the following condition on k enables the fast convergence. We can prove
the below theorem by following similar steps as in the proof of Theorem 1 in
[9].

Theorem 3. Let k ≤ 1/8. Then δΠh
Pdivh pn converges to δΠh

Pdivh p as n→∞.

Proof. By induction, ∀n ≤ 0, |pni,j,k| ≤ 1,∀i, j, k. Thus by fixing n ≥ 0, η =
(pn+1 − pn)/k and considering

‖Πh
Pdivh pn+1 − δ−1τ0‖2 = ‖Πh

Pdivh η + Πh
Pdivh pn − δ−1τ0‖2

= ‖Πh
Pdivh pn − δ−1τ0‖2 + 2k < Πh

Pdivh η,Πh
Pdivh pn − δ−1τ0 >

+k2‖Πh
Pdivh η‖2. (3.82)

Using integration by parts in the second term, and the fact that the Πh
P is an

orthogonal projection Πh
P =

(
Πh
P

)2 and
(
Πh
P

)∗ = Πh
P , gives

‖Πh
Pdivh pn+1 − δ−1τ0‖2 = ‖Πh

Pdivh pn − δ−1τ0‖2

− k
(

2 < η,∇(Πh
Pdivh pn − δ−1τ0) > −k‖Πh

Pdivh η‖2
)
. (3.83)
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We can bound the last term by ‖Πh
Pdivh η‖ ≤ κ‖η‖, where κ = sup|p|≤1 ‖Πh

Pdivh p‖.
It is then clear that ‖δΠh

Pdivh pn+1 − δ−1τ0‖ decreses if k is positive, hence we
need to estimate κ and show that k is positive when pn+1 6= pn and k ≤ 1/κ2.

To achieve the conditions on k we deduce the following

2ηi∇h
(

Πh
Pdivh pi − δ−1τ0

)
− κ2k|ηi|2

=
(
1− κ2k

)
|ηi|2 − |ηi|2

+ 2ηi∇h
(

Πh
Pdivh pi − δ−1τ0

)
, for i = 1, 2, (3.84)

if we insert ηi = ∇h
(

Πh
Pdivh pi − δ−1τ0

)
−
∣∣∣∇h (Πh

Pdivh pi − δ−1τ0

)∣∣∣ pn+1
i in

the above equation we deduce

2ηi∇h
(

Πh
Pdivh pi − δ−1τ0

)
− κ2k|ηi|2

=
(
1− κ2k

)
|ηi|2

−
∣∣∣∇h (Πh

Pdivh pi − δ−1τ0

)∣∣∣2−∣∣∣∇h (Πh
Pdivh pi − δ−1τ0

)
pn+1
i

∣∣∣2 , for i = 1, 2.

(3.85)

Since |pn+1
i | ≤ 1 we have the following

2ηi∇h
(

Πh
Pdivh pi − δ−1τ0

)
− κ2k|ηi|2 ≤

(
1− κ2k

)
|ηi|2 . (3.86)

Thus,
∥∥∥δΠh

Pdivh pn+1
i − τ0

∥∥∥2

decreses if and only if k satisfies 1 − κ2k ≥ 0. If

pn+1
i = pni then ηi = 0, which is also true for κ2k = 1.

There exists a m ≥ 0 such that m = limn→∞

∥∥∥δΠh
Pdivh pn+1

i − τ0
∥∥∥2

since
the norm is uniformly bounded. Let p̄i be the limit of a converging subsequence
(pnk
i ) of (pni ) and p̄i

′ be the limit of pnk+1
i . Inserting the subsequences into

(3.81) and applying the limit gives

p̄′i =
p̄i + k∇h

(
Πh
Pdivh p̄i − δ−1τ0

)
1 + k

∣∣∣∇h (Πh
Pdivh p̄i − δ−1τ0

)∣∣∣ for i = 1, 2. (3.87)

We see from the above equation thatm =
∥∥∥δΠh

Pdivh p̄i − τ0
∥∥∥2

=
∥∥∥δΠh

Pdivh p̄′i − τ0
∥∥∥2

,
i.e ηi = (p̄i′ − p̄i) /k = 0 and p̄i

′ = p̄i, hence

−∇h
(

Πh
Pdivh p̄i − δ−1τ0

)
+
∣∣∣∇h (Πh

Pdivh p̄i − δ−1τ0

)∣∣∣ p̄i = 0 for i = 1, 2

(3.88)

which is the Euler equation for a solution of (3.49). One can deduce that the
δΠh

Pdivh pn is the projection δΠh
Pdiv p and that this projection is unique. The

theorem is proved if we can show κ2 ≤ 8.
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Again, we use the orthogonal property for Πh
P such that we have the reduced

SVD, Πh
P = Q̂IQ̂∗, such that

∥∥Πh
P

∥∥
2

= 1. Then the estimate of κ is the following

‖Πh
Pdivh p‖2 =

∑
1≤j,k≤n

(p1
i,j,k − p1

i,j−1,k + p2
i,j,k − p2

i,j,k−1)2

≤ 4
∑

1≤j,k≤n

(
p1
i,j,k

)2
+
(
p1
i,j−1,k

)2
+
(
p2
i,j,k

)2
+
(
p2
i,j,k−1

)2 ≤ 8‖p‖2Y ≤ 8, i = 1, 2,

(3.89)

which gives the inequality κ2 ≤ 8.

In practice the optimal condition for stability and convergence is achieved
by choosing k equal 1/4 and not 1/8. The iteration converges rapidly for the
first steps, and after n iterations the solution is given by (3.44). By standard
theory from stability analysis and contraction theory we can get a better bound
on k. Let us consider the following linearised iteration

pn+1 = pn + k∇h
(

Πh
Pdivh pn − δ−1τ0

)
. (3.90)

This can be denoted as
pn+1 = φ (pn) , (3.91)

such that φ′ (pn) ≤ 1 is needed for stability (1-Lipstichz), φ′ (pn) can be bounded
below by the following

‖k∇hΠh
Pdivh ‖ − ‖1‖ ≤ ‖1 + k∇hΠh

Pdivh ‖ ≤ 1, (3.92)

which gives the condition on k

k‖∇hΠh
Pdivh ‖ ≤ 2. (3.93)

Thus, we need an estimate on the norm of the operator ∇hΠh
Pdivh . Note that

‖B‖∞ = 2 and ‖∇hΠh
Pdivh ‖2 = ‖∇hdivh ‖2, hence the SVD of ∇hdivh is the

following

BTx divh = −CT
[[

0
Σ2
x

]
+
[

0
Σ2
xy

]]
C (3.94)

Bydivh = −CT
[[

0
Σ2
y

]
+
[

0
Σ2
yx

]]
C. (3.95)

Now we can give a bound on the operator, e.g in the x direction, by the following

λmax

(
∇hdivh

)
= λmax

(
Σ2
x

)
+λmax

(
Σ2
xy

)
≤ ‖B‖22+‖B‖22 ≤ ‖B‖2∞+‖B‖2∞ = 8,

(3.96)
which gives the optimal condition on k, i.e k ≤ 1/4.
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Second step The discrete version of the minimization in the second step is
given by

r0 = 0, rn+1 =
rn + k∇h

(
divh (rn + n)− µ−1d0

)
1 + k

∣∣∣∇h (divh (rn + n)− µ−1d0

)∣∣∣ , (3.97)

where n = (n1, n2) is denoted as the normal vector field, calculated by the
tangential vector field found in the first step

n1 =
v√

v2 + u2 + ε
, n2 =

−u√
v2 + u2 + ε

. (3.98)

The ε > 0 is introduced as a small constant to avoid dividing by zero. In all the
numerical examples for the second step, ε is chosen equal to 10−11.

Theorem 4. Let k ≤ 1/8. Then µdivh (rn + n) converges to µdivh (r + n) as
n→∞.

To get a better bound on k we consider the following

rn+1 = rn + k
(
∇h
(

divh (rn + n)− µ−1d0

))
. (3.99)

The above equation can be viewed as

rn+1 = φ(rn), (3.100)

where φ′(rn) ≤ 1 is needed for stability. Thus we need a lower bound which
gives

‖k∇hdivh ‖ − ‖1‖ ≤ ‖1 + k∇hdivh ‖ ≤ 1, (3.101)

which yields the following condition on k

k‖∇hdivh ‖ ≤ 2, (3.102)

hence we need to estimate ‖∇hdivh ‖2 = λmax

(
∇hdivh

)
. Note that ‖B‖∞ = 2,

and the SVD of ∇hdivh is the following

BTx divh = −CT
[[

0
Σ2
x

]
+
[

0
Σ2
xy

]]
C (3.103)

Bydivh = −CT
[[

0
Σ2
y

]
+
[

0
Σ2
yx

]]
C (3.104)

λmax

(
∇hdivh

)
= λmax

(
Σ2
x

)
+λmax

(
Σ2
xy

)
≤ ‖B‖22+‖B‖22 ≤ ‖B‖2∞+‖B‖2∞ = 8.

(3.105)
This gives a better estimate on k which is less or equal to 1/4.

As we can see, the second step has the same condition number as the Cham-
bolle method for the ROF model, κ

(
∇hdivh

)
≈ 104.
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Finally, we can put all pieces together and give the complete algorithm
Algorithm: Dual TV-Stokes
Given d0, k, δ and µ ;

Step one;
Let p0 = 0 and q0 = 0 ;
Calculate τ0 = (v0, u0) : v0 = −Bd and u0 = dB;
Initialize counter: n = 0 ;
while not converged do

Calculate projections:

(πp, πq) = Πh
K(divh pn,divh qn) (3.106)

pn+1 =
pn + k

(
∇h
(
πp − δ−1v0

))
1 + k |(∇h (πp − δ−1v0))|

. (3.107)

qn+1 =
qn + k

(
∇h
(
πq − δ−1u0

))
1 + k |(∇h (πq − δ−1u0))|

. (3.108)

Update counter: n = n+ 1 ;
end
Calculate τ :

τ = τ0 −Πh
K(δdivh pn+1, δdivh qn+1) (3.109)

Step two;
Let r0 = 0 and calculate the normal vector field:
n = (n1, n2), n1 = u(v2 + u2)−1/2 and n2 = −v(v2 + u2)−1/2 ;
Initialize counter: n = 0 ;
while not converged do

Calculate projections:

rn+1 =
rn + k

(
∇h
(

divh (rn + n)− µ−1d0

))
1 + k

∣∣∣(∇h (divh (rn + n)− µ−1d0

))∣∣∣ . (3.110)

Update counter: n = n+ 1 ;
end
Recover image d:

d = d0 − µdivh
(
rn+1 + n

)
(3.111)

Algorithm 1: Dual TV-div algorithm for image denoising

The operator with the highest computational cost in the above algorithm is
the orthogonal projection, but with the aid of the fast Fourier transformation,
the operators S and ST = S−1 or C and CT = C−1 only require O(N2 log2N)
arithmetical operators. All other computations have the cost of O(N2) arith-
metical operators.
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Stopping criteria

This section discusses the termination for Algorithm 1. The decision is based
on computing the difference of the norm of the minimization functional or the
residual to the iteration. If the difference is below a given tolerance, then the al-
gorithm should terminate, such that the resulted image has a sufficient restored
quality.

Measuring the dual energies for the TV-Stokes model in the equations (3.49)
and (3.59) or for the Fourth-Order model in equation (3.15), and then to com-
pute its relative error is an easy way to see if the iteration is stable. The dual
energy function is given by E : Y → R+ and is measured by ‖·‖Y from equation
(1.21). The difference in the dual energy is then given by∣∣E(fn+1)− E(fn)

∣∣
E(fn+1)

≤ tol (3.112)

for a given tolerance.
The residuals from equations (3.81) and (3.97) will give a better measure-

ment for convergence. The residuals will compute the difference at each pixel
from the current iteration to the previous iteration. Thus, by looking at the
difference

r =
pn+1 − pn

k
, (3.113)

and then measuring the residual by ‖r‖X , will give the residual number in
each iteration. A given tolerance can then be used to stop the iteration, i.e to
compute ‖r‖X and check if it is below a given tolerance.

It should be pointed out that the Chambolle iteration is a fast method
for achiving a denoised image, which is done in a few iterations. After 50-100
iterations the convergence speed gets slower i.e reducing the residual to e.g 10−1

or lower is a slower process. However, this is rarely needed, since the human
eye stops notifying changes in the image when the residual is below 10−1. For
practical situations it is more natural to measure the energy, since the tolerance
can be given as a magnitude.

The incompressibility condition in the first step is always fulfilled when
solved by the orthogonal projection ΠP , such that measuring the objective func-
tion in the first step is a satisfactory measure for convergence. The ‖dn−d0‖ = σ
constraint in the second step, however, must be measured in each iteration in
addition to the objective function. When both these estimates are below a given
tolerance, we can say that the method has converged. If the noise-level σ is a
known measure or an estimate of the real noise-level, we can get a fast conver-
gence for the constraint by updating the smoothing parameter in each iteration,
see the choice of smoothing parameter in 4.1.
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Chapter 4

Numerical experiments

This chapter reports on the computational experiments for various test images
with different degrees of difficulty. The numerical experiments will present a
subset of all the the experiments that have been thoroughly studied during this
thesis. The experiments are done mainly with the proposed algorithm described
in the last section, as well as some brief comparison with other models based on
total variation.

We need some tools to measure the efficiency for the different algorithms, so
that we can judge the quality of the denoised image. The difference image will
be used as a measure on how the algorithms preserve the edges, i.e if the edges
are smoothed out by an algorithm, then the difference image will clearly contain
edges. The difference image is given as dn − d0, where dn is the n-th solution.
For an optimal denoised image the difference image contains only noise.

The contour plots, imcontour in MATLAB, also help to evaluate the results
as they reveal the level curves of the denoised image. As a quantitative measure,
one can measure the restoration performance by the SNR that is given by

SNR = 20 log10

(∫
Ω

(d− d)2 dx∫
Ω

(η − η)2 dx

)
, (4.1)

where
d =

1
|Ω|

∫
Ω

ddx, and η =
1
|Ω|

∫
Ω

η dx. (4.2)

The SNR will be reported for the noisy image. Finally there will be given a
presentation on how the proposed algorithm compares in speed of convergence
to the primal TV-Stokes algorithm. Using these tools we will be able to judge
the efficiency of the different algorithms.

The basis of comparison will be equal for all the methods that are reported.
In all the experiments the images are normalized into [0, 1], where 0 is white
and 1 is black. The only information that is given concerning the problem is
the noisy image, i.e the exact same noisy image, and a new noisy will not be
generated for each test. The noise-level σ will also be given, measured from the
generated noise. When the noise-level is known, the smoothing parameter will
be estimated such that the constraint ‖dn−d0‖ ≈ σ is fulfilled, this has the effect
of choosing the most regular solution to the ill-posed problem. Thus, making
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the comparison of the TV-Stokes model and the ROF model more correct, since
they share the same quality of fidelity.

In practical situations the noise-level may be given as an estimate from
statistical approaches, see for instance [29]. Many authors from the literature
choose to find the smoothing parameter by trial-and-error, as this parameter is
constant and may give a clearer indication on how a proposed algorithm per-
forms. Finding the smoothing parameter is not an easy task and the parameter
should be sufficiently small, i.e not over-smooth and lose edges.

We will use equation (3.112) to measure the dual energy difference in order to
terminate the iteration. It should also be noted that all the algorithms are coded
in MATLAB and it is likely that the performance would improve with a low-
level programming language such as C or C++, especially exploiting the GPU
(Graphical Processor Unit) with e.g CUDA which is a C-dialect for parallelling
the GPU.

(a) Original image. (b) Noisy image.

Figure 4.1: The original Lena image d and a noisy version d0 = d + η, where
‖η‖2 = σ = 10.9 and SNR ≈ 16.0.

The first numerical example is the well known Lena image, seen in Figure 4.1,
that has been used in image processing since the seventies. Gaussian noise is
added to the image, generated by the MATLAB function imnoise with zero
mean and the variance paramter equal to 0.003. In Figure 4.2, the noisy image
has been applied to the denoising algorithms, and the figures show how the
different denoising algorithms perform. The next Figure 4.4 is a close up of
Figure 4.2, to show the reader a subjective view on how the methods handle
staircasing. The final experiment for the Lena image is showing how the dual
TV-Stokes performs on convergence. All the models that have been given are
solved by the dual formulation.

For the dual TV-Stokes method we have used δ equal to 0.06 and the timestep
k equal to 1/4. The Figure 4.2.(a)-(b) shows that the TV-Stokes has performed
quite well, and managed to completely remove the staircase while effectively
smoothing out the noise and preserving the edges quite well. The Figure 4.2.(c)-
(d) shows the dual TV-Stokes model with the identity operator for the orthog-
onal projection ΠP = I, i.e it solves the minimization on a non-constrained
space. One see it is very close to the Figure 4.2.(a), and the respective Figures
in 4.4 show a close up and where one can see that (c) has some small details
smoothed out. The contour plots reveal this effect even more, since it is shown
that the level curves are smoother when the div τ = 0 condition is fulfilled.
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The Fourth-Order method is shown in Figure 4.2.(e)-(f) and respectively in
Figure 4.4. This method is also known to remove staircase effect as seen in the
experiments, but it has the side effect that “black spots” are introduced in the
restored image. This is also clearly seen in the contour plots, where the level
curves are oscillating. Since the Fourth-Order method is a smoother solution,
the restored image keeps the edges, but not as sharp as e.g the ROF model,
thus resulting in a denoised image that may be more blurred.

The last Figures in 4.2 show how the classical ROF model performs. It is
well known that this model introduces staircasing effect in images that are not
piecewise constant, and this is clearly illustrated in the restored images.

The TV-Stokes model solved by the primal and the dual formulation has
nearly the same quality. For the Lena image in Figure 4.3 the noise-level is
equal to 14.0. The smoothing parameter δ is equal to 0.0835 and µ is equal
to 0.17 for the dual TV-Stokes restored image shown in Figure 4.3.(b). For
the primal TV-Stokes algorithm, δ was equal to 0.045. The Cameraman in
Figure 4.3 is taken directly from the paper [34], where the SNR is the same
as the one we report, 20 log10(8.21) ≈ 18.28. Figure 4.3.(e) is solved by the
dual TV-Stokes with δ equal to 0.055 and µ equal to 0.08. Figure 4.3.(f) shows
the primal TV-Stokes reconstruction for the same noisy image, where the δ
parameter is equal to 0.06.

The main difference between the two formulations is that the dual formula-
tion solves the problem more effectively. Clearly, from Table 4.1, we see that
the dual formulation improves the speed drastically. The runtimes in the table
was given for only one runtime, since computing an avarage of many runtimes
is very time consuming for the TV-Stokes method.

Algorithm Dual TV-Stokes algorithm TV-Stokes algorithm, [34]
Image First step Second step First step Second step
Lena 9.8 1.12 9083.2 1992.5
Cameraman 17.4 2.2 11189.0 2259.4
Barbara 128.2 20.7 80602.5 14926.3

Table 4.1: Runtimes of the dual TV-Stokes algorithm compared to the TV-
Stokes algorithm [34]. The test system is a 2 Opteron 270 dualcore 64-bit
processor and 8GB RAM. Both steps in the dual TV-Stokes algorithm are com-
puted with 150 iterations, while the first step in the primal TV-Stokes algorithm
is calculated with 75000 iterations and the second step with 25000 iterations.

We will again turn to the dual TV-Stokes model, and this time to see how
fast the dual formulation performs. The energy plots in Figure 4.5.(a)-(b) and
Figure 4.6.(a) show that the method is rapidly converging for the first 50-100 it-
erations, and then the performance is decreasing. The slow speed of convergence
is well-known and there have been some research to improve the convergence
rate. In [13] they proposed a multigrid method to accelerate the convergence,
and by convergence rate analysis they showed that there are some difficulties
for the nonlinear multigrid method. To improve the convergence they proposed
a modified model that introduces regularization back into the iteration, as op-
posed to the Chambolle iteration, which manages to avoid regularization. This
illustrates the difficulity of finding fast solvers for nonlinear PDES.

The authors of [41] proposed various gradient projection algorithms to solve
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(a) Denoised with the TV-Stokes
model. Timestep k equal to 1/4.

(b) Difference image of (a).

(c) Same parameters as (a) and
ΠP = I.

(d) Difference image of (c).

(e) Denoised with the Fourth-Order
model. Timestep τ equal to 1/16.

(f) Difference image of (e).

(g) Denoised with the ROF model.
Timestep τ equal to 1/4.

(h) Difference image of (g).

Figure 4.2: Comparison of the Lena image with the following algorithms: the
dual TV-Stokes model, the Fourth-Order model and the ROF model. The
figures on the right show the corresponding difference image dn − d0.
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(a) Noisy lena, SNR ≈ 14.0. (b) Denoised with the dual
TV-Stokes model.

(c) Denoised with the primal
TV-Stokes model.

(d) Noisy Cameraman. (e) Denoised with the dual
TV-Stokes model.

(f) Denoised with the primal
TV-Stokes model.

Figure 4.3: Comparison of the primal and dual TV-Stokes. The denoised quality
for the primal and the dual model is nearly equal.

the quadratic minimization, e.g (2.32), with different strategies to select line-
search and step-length. They report that some of the proposed approaches
perform significantly faster, particularly when the accuracy for the residual is
modest.

The next image, is the classical Cameraman image. The image is harder to
restore than the Lena image due to the low intensity details and the flat back-
ground. Total variation based methods often struggle with these kind of features
while denoising. Because of the smoothing, low intensity details get smeared out
and the flat background is transformed into an area where the staircase effect
dominates. This is easily seen in Figure 4.8 where the Figure 4.8.(c) is restored
by the ROF method. Restoring the method with a higher-order method will
improve the staircase effect in the background restoration, but fails to preserve
the low intensity details, as this method provides a smoother solution. Fig-
ure 4.8.(a) shows the restored image by the Fourth-Order dual method, and the
Cameraman reveals that the black spots, that higher-order methods are known
to introduce, are presented in the restored result.

The dual TV-Stokes model also has some numerical difficulities with this
image. The large amount of constant skyline in the background causes the
algorithm to have more iterations, as the residual needs to be lower than e.g the
Lena image. Besides the ineffective convergence, the restored quality is visually
more pleasant for the TV-Stokes model than the ROF model or the Fourth-
Order model, since the staircase effect does not appear in the final restored
result, seen in the Figure 4.7.(e) with residual tolerance given as tol = 1.0×10−1.

The last example is the Barbara image, which is detailed image with high
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(a) Denoised with the TV-Stokes
model.

(b) Contour plot of (a).

(c) Denoised with ΠP = I. (d) Contour plot of (c).

(e) Denoised with the Fourth-Order
model.

(f) Contour plot of (e).

(g) Denoised with the ROF model. (h) Contour plot of (g).

Figure 4.4: Zoomed result for the restored images generated by the TV-Stokes
(with and without ΠP ), Fourth-Order model and the ROF model.
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(a) Difference in the energy for the v− com-
ponent |E(pn+1

1 )− E(pn
1 )|/E(pn+1

1 ).
(b) Difference in the energy for the u− com-
ponent |E(pn+1

2 )− E(pn
2 )|/E(pn+1

2 ).

(c) Residual for the v component v−. p11
(blue line) and p21 (red line).

(d) Residual for the u− component. p12 (blue
line) and p22 (red line).

(e) Constraint for the v− component (blue
line) and ‖ηv‖2 = σ1 (red line).

(f) Constraint for the u− component (blue
line) and ‖ηu‖2 = σ2 (red line).

Figure 4.5: Convergence behaviour for the tangential vector field τ = [v, u]T of
the first step. Smoothening parameter δ equal to 0.06 and timestep k equal to
1/4.
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(a) Difference in the energy
|E(rn+1)−E(rn)|/E(rn+1).

(b) Relative error of the con-
straint, |σ−en|/σ, e = ‖dn−
d0‖2.

(c) Residuals for the projec-
tions. r1 blue line and r2 red
line.

Figure 4.6: Convergence behaviour of the second step. Energy tolerance is equal
to 10−5 and timestep k is equal to 1/4.

and low intensity textures. The high intensity textures and the smooth areas
are preserved quite well, but the low intensity textures disappear in the same
way as with the Cameraman. This image is 512× 512 in size, which makes the
algorithm slower because of the rather large matrix operations per iteration.
However, achieveing a result for the optimal paramters is still obtainable since
the method is stable after a few steps. Therefore one can run the method
multiple times to find the optimal parameters. For this image we found the
optimal δ to be equal 0.046.

4.1 Choice of the smoothing parameters

It is important to keep mandatory parameters to a minimum, such that auto-
matic processing can be implemented and used in industrial cases.

The smoothing parameter δ in the first step controls the fidelity terms ‖v−
v0‖ ≈ σ1 and ‖u − u0‖ ≈ σ2 where [v, u]T = τ and [v0, u0]T = τ0. In the
experiments the smoothing parameter δ for the first step has been tested in
the interval 0.01 ≤ δ ≤ 0.1. By starting with a small δ, the tangential vector
field should contain some noise. Then, carefully increasing the δ such that the
tangential vector field is sufficiently restored, the noise is smoothed out and the
edges are restored. Using this tuning strategy, one should find the optimal δ for
the first step.

The smoothing parameter µ for the second step controls the fidelity of ‖dn−
d0‖2 = σ. If the parameter is chosen high, the resulted image is over-smoothed,
and respectively under-smoothed if chosen low, as seen in Figure 4.10. The
iteration starts with an under-smoothed image, i.e ‖di − d0‖2 ≤ σ for i =
0, 1 . . . n, and the algorithm gradually iterates to a restored image such that
‖dn − d0‖ ≈ σ.

If the noise-level σ is a known measure or an estimated value, the µ > 0
parameter can be updated in each iteration by considering the equality of the
constrained and unconstrained problems (3.54) (3.56) such that µn is updated
by the following iteration

µn =
σ

‖divh (rn + n)‖2
. (4.3)
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(a) tol = 1.0, 74 iterations for the
1-step and 104 iterations for the 2-
step.

(b) Contour plot of (a).

(c) tol = 5.0 × 10−1, 131 iterations
for the 1-step and 201 iterations for
the 2-step.

(d) Contour plot of (c).

(e) tol = 1.0 × 10−1, 552 iterations
for the 1-step and 1381 iterations for
the 2-step.

(f) Contour plot of (e).

Figure 4.7: Restored Cameraman with different residual tolerances. The figure
clearly illustrates the need for low residual to give a sufficiently restored image.
The figures on the right show the corresponding contour plots.

The iteration gives a fast convergence for the constraint.
If the noise-level is not a known measure or a good estimate can not be

obtained, the µ parameter must be found by trial-and-error. This is normally
done by choosing µ low, and then carefully increasing the parameter until the
noise in the restored image is satisfactorily smoothed out. Anyhow, the differ-
ence should converge to zero, and is a useful estimate to see if the constraint
has reached a stable state.
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(a) Denoised with the Fourth-Order
model. Timestep τ equal to 1/16.

(b) Contour plot of (a).

(c) Denoised with the ROF model.
Timestep τ equal to 1/4.

(d) Contour plot of (c).

Figure 4.8: The Cameraman restored with the ROF model and the Fourth-
Order model. Residual tolerance is equal to 1.0 for both models.
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(a) Original image. (b) Noisy image, SNR ≈ 20.0.

(c) Denoised image. (d) Difference image of (a) and (c).

(e) Zoomed result for the denoised image
in (c).

(f) Contour plot of (e).

Figure 4.9: Barbara denoised with the dual TV-Stokes model. Residual toler-
ance is equal to 0.5× 10−1 and smoothening paramter δ equal to 0.046.
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(a) Under smoothed. (b) Optimal smoothed. (c) Over smoothed.

(d) ‖d− d0‖2 < σ. (e) ‖d− d0‖2 ≈ σ. (f) ‖d− d0‖2 > σ.

Figure 4.10: The figures illustrates different choices for the smoothening pa-
rameter µ for the second step. The straight line in the plots are the noise-level
σ.
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